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Solving problems in parameter redundancy
using computer algebra
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abstract A model, involving a particular set of parameters, is said to be parameter

redundant when the likelihood can be expressed in terms of a smaller set of parameters. In

many important cases, the parameter redundancy of a model can be checked by evaluating

the symbolic rank of a derivative matrix. We describe the main results, and show how to

construct this matrix using the symbolic algebra package Maple. We apply the theory to

examples from the mark- recapture ® eld. General code is given which can be applied to

other models.

1 Introduction

1.1 B ackground

Let us suppose that a probability model has been proposed for a set of data, and

that we intend to ® t the model to the data using maximum likelihood. It is often

the case that the likelihood surface is maximized on a completely ¯ at ridge or

plane, due to a redundancy in the parameter set. As we shall see from the examples

later, it can be diý cult to gauge whether or not all the parameters can, in principle,

be estimated from the data. Areas in which this occurs include compartment

modelling (Seber & Wild, 1989, chapter 8), Kalman Filter methodology (Harvey,

1989, p. 205), ion-channel modelling (Chen et al., 1997), directed networks

(Geiger et al., 1996; Whiley, 1999), econometrics (Rothenberg, 1971), latent

structure models (Goodman, 1974), and in models for the analysis of recovery /

recapture data resulting from observations on marked animals (Freeman & Morgan,

1992; Lebreton et al., 1992). If data are missing it may no longer be possible to
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estimate all of the parameters in a model that is not parameter redundant (Catch-

pole & Morgan, 2001).

Recent research has shown how, for a wide class of models, established methods

of computer algebra may be used to detect which models are parameter redundant

(Catchpole & Morgan, 1997), and to determine which parameter combinations

are estimable, i.e. have unique maximum-likelihood estimates (Catchpole et al.,

1998). After summarizing existing results for detecting parameter redundancy, we

show how the basic problems may be solved in a simple and straightforward

manner using the symbolic computation package, Maple. In order to do this, we

focus on a single ® eld, namely models for mark- recapture data. However, the

procedures given apply equally well to other ® elds, using straightforward modi® ca-

tions to the Maple code provided here. Evidently, alternative symbolic algebra

computer packages may be used.

Consider a data vector y 5 ( y1 , . . . , yn) from an exponential family distribution.

The models we consider specify the distribution and provide an expression for the

mean vector l 5 E[y] in terms of a parameter vector h 5 ( h 1 , . . . , h q ), say. A model

is parameter redundant if l can be expressed in terms of a parameter vector

b 5 ( b 1 , . . . , b r), with r< q. Otherwise it is said to be full rank. The test for

parameter redundancy of Catchpole & Morgan (1997) requires the formation of

the derivative matrix,

A 5 {¶ l i

¶ h j }, 1 < j < q, 1 < i < n (1)

Catchpole & Morgan (1997) show that the model is parameter redundant if and

only if A is symbolically row-rank de® cient, i.e. if and only if there exists a non-

trivial vector function a ( h ), such that

a ( h )T
A 5 0 for all h . (2)

It is equivalent (and often easier) to replace l by a suitable monotonic function,

and log( l ) is used in the examples below.

Models for mark- recapture data typically involve several independent multi-

nomial distributions, and are examined for parameter redundancy in the same way

as above.

If models are selected by means of information criteria (see, for example,

Burnham & Anderson, 1998, and Lebreton et al., 1992) it is important to know

how many separate parameters have been estimated in the model-® tting. Current

procedures for assessing parameter- redundancy involve making numerical approxi-

mations to the Hessian matrix of the log-likelihood (see, for example, Viallefont

et al., 1998). The test of equation (2) is equivalent to testing the rank of the

expected Hessian matrix (Catchpole & Morgan, 1997). In the numerical approach,

an assessment is made that combines the inherent structure of the model with

particular aspects of the data set that is analysed. The work described in this paper

provides a diþ erent approach, since we show how ® rst to determine the parameter-

redundancy of a model, and then how to gauge whether a data set that possesses

missing values does or does not increase the parameter-redundancy.

The emphasis in this paper is on the use of a symbolic algebra computer package,

for models and data sets of a particular size. However, in some cases, it is possible

to draw conclusions by direct observation, rather than use symbolic algebra (see,

for example, Catchpole et al., 1996). Additionally, as we explain in Section 5, it is
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desirable, and often possible, to establish the parameter redundancy of a particular

model, irrespective of the size of the study. This is a useful and simplifying feature,

which avoids a large amount of duplication of testing eþ ort.

1.2 Models for mark- recapture data

In mark- recapture studies, animals are marked and released and it is recorded

when (if at all) they are next seen /recaptured alive during the course of the study.

Frequently, such studies work to an annual timescale that coincides with the life-

cycle events of many wild animals.

Example 1: The Cormack- Jolly- Seber model

One of the basic models for such a study is the Cormack- Jolly- Seber model

(Cormack, 1964; Jolly, 1965; Seber, 1965), with time-dependent annual survival

probabilities { u t}, and time-dependent annual recapture probabilities { pt }. Suppose

that there are m 5 2 years of marking and release of the animals and k 5 3 years of

recapture, and let X i, j be the probability that an animal marked in year i is next

recaptured in year j + 1. The resulting matrix of recapture probabilities is

X 5 f u 1 p1 u 1 u 2 (1 2 p1 )p2 u 1 u 2 u 3 (1 2 p1 )(1 2 p2 )p3

0 u 2 p2 u 2 u 3 (1 2 p2 )p3 g
The corresponding data matrix is known as the m-array (Burnham et al., 1987,

pp. 34 et seq.).

In order to check for parameter redundancy, it is not necessary to consider the

multinomial cell probabilities corresponding to animals that are never captured

during the study (see Catchpole & Morgan, 1997). This is a particularly simple

model, and it is well known that, in the case m 5 k, the model is parameter

redundant, since u k and pk only appear in X as the product u k pk , but that all other

parameters in the model are estimable. Even for this simple model, however, it is

not clear whether all other parameters remain theoretically estimable in a case such

as the above where m < k. We show how to answer this question using simple

Maple code, and also illustrate more complex models, for which it is not otherwise

easy to decide the parameter redundancy.

Mark- recapture models are often very much more complicated than that of

Example 1, frequently involving a large number of parameters. One illustration is

when animals may be distributed over diþ erent sites, and move between those sites.

2 The probability matrix

Once a model is speci® ed, we need to construct the probability matrix X . It can

save a lot of time, and eliminate the possibility of errors, if this is done using

computer algebra. We shall now consider how to proceed; more powerful features

of Maple will be used later in the paper. Example 1 has both the survival

probabilities u and the recapture probabilities p being purely time-dependent. This

can be represented symbolically by the parameter matrices

U 5 f u 1 u 2 u 3

0 u 2 u 3 g and P 5 f p1 p2 p3

0 p2 p3 g
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where U i, j is the probability that an animal from cohort i, alive at occasion j,

survives until occasion j + 1, and P i, j is the probability that an animal from cohort

i, alive at j + 1, is recaptured then. The Maple code to set up these matrices is as

follows.

> m : 5 2: k : 5 3:

> phi : 5 vector(k): p : 5 vector(k):

> Phi : 5 matrix(m,k,0): P : 5 matrix(m,k,0):

> for i from 1 to m do

for j from i to k do

Phi[i, j] : 5 phi[j]: P[i, j] : 5 p[j]:

od;

od;

A simpler method of denoting this pure time dependence is to use the parameter

index matrices (PIM)

U pi 5 Ppi 5 f 1 2 3

0 2 3 g
This method is used in the MARK package (White & Burnham, 1999) for the

analysis of mark- recapture and recovery data. After constructing the matrix Ppi as

above, all that is then required is

> Phi : 5 Index2Mat(Ppi,phi): P : 5 Index2Mat(Ppi,p):

where the code for Index2Mat is given in the Appendix. A simpler method still

does not use PIM, but instead implements special procedures for particular models.

For purely time-dependent parameters, as above, we could use

> Phi : 5 Time(phi): P : 5 Time(p):

using the procedure Time given in the Appendix.

The probability matrix X is then constructed in two stages. First, the procedure

CumSurviv (cumulative survival) transforms the matrix U into the matrix

CumSurviv( U ) 5 f u 1 u 1 u 2 u 1 u 2 u 3

0 u 2 u 2 u 3 g
and CumRecap transforms P into

CumRecap(P) 5 f p1 (1 2 p1 )p2 (1 2 p1 )(1 2 p2 )p3

0 p2 (1 2 p2 )p3 g
Secondly, these two matrices are multiplied together, elementwise using pmult, to

form X . The Maple code for this operation is simply

Omega : 5 pmult(CumSurviv(Phi), CumRecap(P));

The code for CumSurviv, CumRecap and pmult is also given in the Appendix.

It should be clear now how other standard models, incorporating age-depend-

ence, for example, may be similarly programmed, as well as complex models

tailored to particular data. The beauty of this use of Maple for constructing X is

that it reduces the chance of human error at this stage.
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3 The derivative matrix

3.1 The rank of A

In order to form the derivative matrix A, we collect the non-zero elements of the

probability matrix X into a single vector x , take logarithms of the elements x , and

then calculate the symbolic derivatives with respect to the parameters. The rank of

the resulting matrix then gives the number of parameters that can be estimated by

maximum likelihood. This is done by means of the following commands, with the

results shown for the model of Example 1.

> q : 5 vectdim(phi) + vectdim(p);

q: 5 6

> A : 5 Dmat(Omega,phi,p);

A 5

1

u 1

1

u 1

1

u 1

0 0

0
1

u 2

1

u 2

1

u 2

1

u 2

0 0
1

u 3

0
1

u 3

1

p1

2
1

1 2 p1

2
1

1 2 p1

0 0

0
1

p2

2
1

1 2 p2

1

p2

2
1

1 2 p2

0 0
1

p3

0
1

p3f g
> with linalg: rank(A);

4

Note that in this small example we have illustrated the derivative matrix A. This

will not normally be shown. The code for Dmat is given in the Appendix.

Since rank(A) 5 4 is less than the number of parameters q 5 6, the model is

parameter redundant, from Catchpole & Morgan (1997). Since the de® ciency,

de® ned as n 2 rank(A), is 2 rather than 1, it is not just the elements of the

combination u 3 p3 that are non-estimable: the rank shows that there are only four

independent theoretically estimable combinations of the six parameters u 1 , u 2 , u 3 ,

p1 , p2 , p3 , from Catchpole et al. (1998).

3.2 Theoretically estimable parameters

When a model is parameter redundant, it is important to know which, if any, of

the parameters are theoretically estimable. To discover this, we need to consider

the general solution vector a to (2), as explained in Catchpole et al. (1998). This

is accomplished by the instructions below.
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> zero : 5 vector(coldim(A),0):

> alpha : 5 linsolve(transpose(A),zero,’r’,t);

a : 5 f 0,
u 2 ( 2 t1 p3 + t1 p3 p2 2 u 3 t2 + t2 u 3 p2 )

u 3 p3

, t1 , 0,

2
p2 ( 2 t1 p3 + t1 p3 p2 2 u 3 t2 + t2 u 3 p2 )

u 3 p3

, t2 g
This form of the linsolve command assigns rank(A) to the variable r and uses t

for any unknown constants. The vector a has two arbitrary constants, t1 and t2 , since

the model has de® ciency 2. However a has zero entries in positions corresponding to

the rows in A resulting from taking derivatives with respect to the parameters u 1

and p1 . By Catchpole et al. (1998), therefore, u 1 and p1 are theoretically estimable,

but none of the other parameters are.

There must exist two more independent theoretically estimable combinations of

the parameters, since rank(A) 5 4. These can be found, as explained in Catchpole

et al. (1998), by solving the set of linear ® rst-order partial diþ erential equations

+
q

s 5 1

a s, j

¶ f

¶ h s

5 0, j 5 1, . . . , d (3)

where in this case there are q 5 6 parameters and the de® ciency is d 5 2. Here we

are denoting by a 1 and a 2 the independent solutions of (2) formed by taking t2 5 0

and t1 5 0 respectively, and letting a s,j be the sth component of a j .

The pair of equations (3) can be solved using Maple, although we do not show

the code here (see Gimenez, 2001). In the example above, we can in fact see by

inspection that the matrix X can be written in terms of u 1 , p1 , u 2p2 and

u 2 u 3(1 2 p2 )p3 . Since these are clearly independent parameter combinations, in the

sense that no one can be obtained from the others, they must be the four

independent theoretically estimable parameter combinations. For more complex

examples, identi® cation of theoretically estimable parameter combinations by

inspection is likely to be more diý cult than here.

3.3 Missing data

Although a model may be full rank, missing data may render certain parameters

inestimable in practice in any particular application (Catchpole & Morgan, 2001).

Suppose for example, in Example 1, no animals were recaptured from the ® rst

cohort of marked animals in year 3 of the study. This gap in the m-array results in

the element X 1,3 not appearing in the likelihood, and the derivative matrix must be

amended so that this element is omitted. No other changes are required in the

code, except that it now becomes essential to add an extra column to X to

incorporate probabilities for animals not recaptured at all during the study, so that

each row becomes a full multinomial distribution (see Catchpole & Morgan, 2001).

The Maple code for this illustration is shown below.

> X : 5 matrix(m,1):

> for i to m do X[i,1] : 5 1 - sum(Omega[i, j],j 5 1..k) od:
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> Omega_X : 5 augment(Omega,X):

> Omega_X[1,3] : 5 0: print(Omega_X);

f u 1p1 u 1 u 2(1 2 p1 )p2 0

0 u 2p2 u 2 u 3 (1 2 p2)p3

1 2 u 1p1 2 u 1 u 2 (1 2 p1 )p2 2 u 1 u 2 u 3 (1 2 p1 )(1 2 p2 )p3

1 2 u 2 p2 2 u 2 u 3 (1 2 p2)p3 g
> A_X : 5 Dmat(Omega_X,phi,p):

> rank(A_X);

4

The rank of A is unchanged, so that in this case the missing data do not aþ ect

the parameter redundancy.

4 Example 2: two groups of animals

Consider now a situation in which there are two groups of animals (e.g. two sexes),

with time-dependent survival and recapture probabilities, as in Example 1, but

with the survival and recapture probabilities of group 2 being constant multiples

of those for group 1. Thus, the survival probabilities for groups 1 and 2 can be

written as U 1 and U 2 , where U 1 is as in Example 1 and U 2 5 a U 1 , for some constant

a; and similarly for the recapture probabilities we have P2 5 bP1, for some constant

b. In the notation of Lebreton et al. (1992), the models for both survival and

recapture are of the form `time + group’ , since the group eþ ect is additive on a

logarithmic scale.

In examples such as this, it is convenient to have a separate probability matrix X

for each group. To construct the overall derivative matrix, it is then suý cient to

arrange these probability matrices side-by-side, using the Maple augment com-

mand. The code required in this illustration is:

> m: 5 2: k: 5 3: phi: 5 vector(k) : p: 5 vector(k) : a: 5 ’a’ : b: 5 ’b’ :

> Phi1 : 5 Time(phi); # survival for group 1

U 1 : 5 f u 1 u 2 u 3

0 u 2 u 3 g
> Phi2 : 5 evalm(a * Phi1) ; # survival for group 2

U 2 : 5 f a u 1 a u 2 a u 3

0 a u 2 a u 3 g
> P1 : 5 Time(p) : P2 : 5 evalm(b * P1) :

> Omega1 : 5 pmult(CumSurviv(Phi1), CumRecap(P1)) :

> Omega2 : 5 pmult(CumSurviv(Phi2), CumRecap(P2)) :

> Omega : 5 augment(Omega1,Omega2) :

> q : 5 vectdim(phi) + vectdim(p) + 2;

q: 5 8

> A : 5 Dmat(Omega,phi,p,a,b): rank(A);

7
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> zero : 5 vector(coldim(A),0):

> alpha : 5 linsolve(transpose(A), zero, ’r’,t);

a : 5 f 0, 0, 2
t1 u 3

p3

, 0, 0, t1 , 0, 0 g
The model is therefore parameter redundant, since rank(A) 5 7 is less than the

number of parameters, q 5 8. Unlike Example 1, the de® ciency is now only 1.

Furthermore, since a has zeros in every position except those corresponding to u 3

and p3 , all parameters except these two are estimable. It can be seen by inspection

that the other estimable parameter combination is the product u 3 p3 . An interesting

aspect of this model is that if the group eþ ect is additive on any other scale, such as

the logistic for example, then the model is not parameter redundant (Viallefont,

1995, ch. 3). We hypothesize that in such a case the model will be `near-redundant’ ,

using the terminology of Catchpole et al. (2001), and may result in certain

parameters being estimated with low precision.

Near-redundant models are not parameter redundant. However, they may

provide poor estimates of some model parameters, as a result of having small

eigenvalues of the information matrix. Catchpole et al. (2001) suggest that the

numerical procedure of Viallefont et al. (1998) is then needed.

Choquet (2001) and Gimenez (2001) provide applications to multi-state mark-

recapture models.

5 Discussion

In the examples we have given, we have used very small studies, with m 5 2 years

of marking and k 5 3 years of recaptures. We have done this purely for illustration.

There are, in principle, no problems in using Maple on much larger problems.

Focusing on a derivative matrix, rather than an expected Hessian matrix, greatly

enhances the speed of the Maple procedures. Extension theorems, mentioned

below, quite often result in Maple only being needed for `small’ examples of models

of a given structure. Furthermore we have also, for pedagogical reasons, kept the

models considered to be fairly simple. However, the methods given can very easily

be applied to test quite complicated models, including for example all those

considered by Lebreton et al. (1992).

Any results obtained by the methods described above are for a ® xed size of study

only. It would clearly be bene® cial to be able to draw general conclusions about all

studies where the survival and recapture models are of a particular type (e.g. both

purely time-dependent). In other words, we would like to extrapolate from the

results for a particular m and k to general m and k. Catchpole & Morgan (1997)

give such an extension theorem for the full rank case; that is, they show that, under

suitable conditions, if a model is full rank for a small study then it will remain full

rank for a larger study. The corresponding theory for the parameter-redundant

case, showing when the de® ciency is preserved, is given in Catchpole & Morgan

(2001). An illustration is provided by Catchpole & Morgan (2001), in which it is

supposed that in the Cormack- Jolly- Seber model there is an immediate e þ ect of

capture, resulting in a change in the probability of capture that extends to the

following year only. It is shown that when m 5 k > 4, the model has de® ciency 1.

Additional examples are provided by Kgosi (2000). Currently, little is known for

certain when simple models are extended to account for age and /or capture eþ ects.
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The procedures of this paper can be used with con® dence to provide de® nite

statements regarding parameter-redundancy, and for particular data sets to investi-

gate whether missing data values may modify the parameter-redundancy.

The use of Maple to calculate the symbolic rank of the derivative matrix relies

on this matrix being a rational function of the parameters. Although this covers

many examples of practical interest, it does not cover all cases. One important

exception would be where parameters appear in a non-linear way, for example in

describing the dependence of survival on a covariate. The possibility of using

computer algebra in such situations is under current investigation. For the moment,

it is necessary in such cases to revert to numerical methods, as in Viallefont et al.

(1998).
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Appendix

Maple procedures

The following code is available from www.ma.adfa.edu.au/ ~ eac/Redundancy/

Maple.

A1 Index2Mat

A2 Time
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A3 CumSurviv

A4 CumRecap

A5 pmult
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A6 Dmat


